AI如何与医疗行业各个环节深度融合?

智能家居 2020-03-18 10:30123未知admin

未来围绕核心医疗生态体系,人工智能将与医疗体系中的各个环节展开深度融合,不断提升基础性诊断效率,促进药物研发及基因检测的速度与准确率,完善患者预防诊断的周期管理,加速制造企业的智能化转型。AI到底如何赋能医疗行业?文章将从医疗诊断、药物研发、健康管理、器械生产四个方面展开。

医疗诊断

诊前预防:AI+基因检测

通过人工智能与基因检测技术相结合,可以进行更专业更高效的基因测序与检测,提前预测疾病发生的风险。该技术主要是通过测定组成人类染色体中所包含的30亿个碱基对组成的核苷酸序列,绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的,认识疾病产生的机制,从而实现疾病的预测。

传统基因检测中,基因组数量庞大,人工实验费时且实验成本高昂、检测准确率低,而人工智能基于强大的计算能力,科研迅速完成数据的分析,穷尽已有数据库,且能够避免遗漏,挖掘出隐藏于表层原因之下的深层次关联结构,实时高效的更新突变位点和疾病的潜在联系,通过增强解读基因能力,提供个性化精准疾病干预方案,从而有效预测该疾病的相关症状,提前做好相关预防工作。但是基因检测的难度极高,需要高昂的时间和经济成本。生命科学龙头企业如华大基因等,通过多年的技术及数据的积累加持在基因检测方面形成较深的护城河,正在引入人工智能技术检验其在基因测序领域的应用效果,不断尝试拓阔健康管理服务领域。

诊中判断:人工智能+医疗影像

医疗影像,是目前人工智能在医疗领域最热门的应用场景之一。目前我国医疗影像领域存在诸多问题:供给不平衡,影像科医生数量不足,尤其是具有丰富临床经验,高质量的医生十分短缺,而且阅片数量极大,根据《中国人工智能医疗白皮书》,以肺结节检测为例,一家三甲医院平均每天接待200例左右的肺结节筛查患者,每位患者在检查环节会产生200~300张左右的CT影像,放射科医生每天至少需要阅读4万张影像,而诊断结果基本由影像科医生目测和经验决定,尤其是在长时间处理机械式阅片工作后,精力和准确度会下降,误诊、漏诊率较高。如果都能将人工智能与医学影像相结合,能够为医生阅片提供辅助和参考,大大节约医生的时间,提高诊断的精确度。

该场景运用涉及到的人工智能技术为计算机视觉技术。主要应用计算机视觉技术解决以下三种需求:一是病灶识别与标注,可针对医学影像进行图像分割,特征提取、定量分析、对比分析等工作;二是靶区自动勾画与自适应放疗,针对肿瘤放疗环节的影像进行处理;三是影像三维重建,针对手术环节的应用。

眼爆科技 Copyright © 2002-2017 深圳眼爆智能科技有限公司 版权所有 备案号:* 本站资源来自互联网,我们转载的目的是用于学习交流与讨论,如果您认为我们的转载侵犯了您的权益,请与我们联系(Email:gm@ybbtb.com),我们将在3个工作日内删除相关内容。

邮箱地址:gm@ybbtb.com