追踪潜在的新冠病毒感染人群,AI 模型滞后性更低

智能家居 2020-02-14 10:3070未知admin

追踪潜在的新冠病毒感染人群,AI 模型滞后性更低

研究人员已经开始将机器学习技术应用于各种社交媒体,以发现新冠肺炎可能正在中国以外的其他国家传播的微妙迹象。

具体来说,该研究团队通过机器学习从来自社交媒体、新闻报道,以及官方渠道等方面的数据中梳理出信息,然后从医学的角度给予警告。比如,他们会在有疑似病例的地区中寻找提及呼吸道疾病和发烧等症状的社交帖子。

John Brownstein 是该研究团队的一份子,同时也是哈佛医学院的首席创新官。他说:

我们正在美国进行监视工作。如果当局要分配资源并有效阻止疫情蔓延,那么就要知道病毒可能正在哪些地区传播。因此,我们试图从人们“口中”了解到正在发生的事情。

尽管根据世界卫生组织的官方数据,最近新冠病毒感染率有所下降,而且,相比起来,在中国之外的新冠肺炎确诊病例少之又少;不过,国际社会对病毒的传播仍充满担忧,因为目前尚不清楚病毒的传播是否真的得到了缓解,也有可能是新的感染正在变得难以追踪——对此,AI 能够派上用场。

相比起 SARS 期间,本次的新冠病毒有了更多可追踪的资源,比如社交平台和大数据。但是,要在大量的实为普通感冒和流感症状的猜测中,以及海量的谣言中找到新冠病毒感染的迹象是一个巨大的挑战。因此,John Brownstein 团队对模型进行重新训练,以分辨出不同的术语和症状。

目前,John Brownstein 团队的机器学习模型已被证明能够在大数据中找到疑似新冠病毒感染的病人。除此之外,该模型还可以帮助专家了解病毒的行为,可以更快地定位到存在风险的人群和地区。

东北大学教授 Alessandro Vespignani 致力于研究大型人群的传染病建模。他表示,即使使用目前最先进的 AI 工具,从社交媒体上识别出新冠病毒的潜在新病例也不是一件简单的事,因为人们还未完全悉知其特征,也没有相关的历史数据;不过可以明确的是,将 AI 和其它技术结合起来“可能非常强大”。

John Brownstein 团队一方面通过 AI 模型从社交媒体和大数据中定位可能感染新冠病毒的人,另一方面正在与位于波士顿的 Buoy 公司进行合作,这家公司通过门户网站为美国数百万人提供健康建议。也就是说,Buoy 公司负责收集怀疑自己已经感染新冠病毒的用户的信息,并为用户提供相关的建议,然后将这些数据提供给 John Brownstein 团队。

实际上,AI 在本次于武汉爆发的新冠肺炎疫情中的贡献不止于此。早在 2019 年 12 月 31 日,加拿大健康监测公司 BlueDot 就已经通过 AI 技术检测到了风险,并向外界发出警告,避开武汉等危险区域。

眼爆科技 Copyright © 2002-2017 深圳眼爆智能科技有限公司 版权所有 备案号:* 本站资源来自互联网,我们转载的目的是用于学习交流与讨论,如果您认为我们的转载侵犯了您的权益,请与我们联系(Email:gm@ybbtb.com),我们将在3个工作日内删除相关内容。

邮箱地址:gm@ybbtb.com