2019年大数据与AI领域主要发展趋势(3)

智能家居 2019-08-19 16:30182未知admin

数据环境日益混合的另一个后果是,企业需要加大努力来获得对数据的控制。

目前的数据环境非常复杂,有些位于数据仓库、有些位于数据湖、有些位于各种其他数据源,跨越本地部署、私有云和公共云,那应该如何查找、管理、控制和跟踪数据?这包含各种相关的形式和名称,包括数据查询、数据治理、数据编目和数据沿袭,所有这些都越来越重要和突出。

在混合环境中查询数据本身就是一个挑战,其解决方案要符合存储和计算分离的总体趋势。

数据治理是另一个迅速成为企业首要考虑的领域。数据治理的一般思想是管理数据,并确保整个数据生命周期(涉及数据有效性、完整性、可用性、一致性和安全性)的高质量性。值得注意的是,在2019年初,Collibra进行了一轮1亿美元的融资,估值超过10亿美元。

数据编目是数据管理的另一种日益重要的手段。有效的数据编目是综合企业各种数据资产的字典。它们帮助用户(包括数据科学家、数据分析师、开发人员和业务用户)能够自助发现和使用数据。

最后,数据沿袭可能是最新出现的数据管理类别。数据沿袭的目的是捕获跨企业的“数据之旅”。它帮助公司弄清楚数据在其生命周期中是如何被收集、如何被修改以及如何被分享的。许多因素推动了这一领域的增长,包括合规、隐私和伦理的重要性日益增加,也包括对机器学习管道和模型的可重复性和透明度的需求。

今年一直在加速发展的最后一个关键趋势,是AI专用基础设施的不断涌现。

管理人工智能管道和模型的需求导致了MLOps(或AIOps)领域的快速增长。为了呼应这种新趋势,今年的Landscape里面,我们添加了两个新的框,一个名为基础设施(各种早期创业公司包括Algorithmia、Spell、 Weights&Biases等等),一个名为开放源码(各种各样的项目,通常相当早,包括Pachyderm、Seldon、Snorkel、MLeap等等)。

ML工程师需要能够运行实验并快速迭代,在需要时访问如GPU等资源。在我们的Data Driven NYC活动中,我们介绍了一些早期初创公司,它们提供了诸如Spell、Comet、Paperspace等基础设施。

随着GPU数据库的崛起和新一代人工智能芯片(Graphcore、Cerebras等)的诞生,人工智能对基础设施产生了深远的影响。人工智能正迫使我们重新思考计算的本质。

分析层面发展趋势

商业智能(BI)正在整合

企业AI平台是一个趋势

横向人工智能仍然非常活跃

在商业智能领域, 正如前面提到的,过去几个月的明显趋势是大量整合,包括Tableau、Looker、Zoomdata和Clearstory的收购,以及SiSense和Periscope的合并。因为数据可视化和自助分析服务有大量的供应商,BI中的整合在某种程度上是不可避免的。每个供应商,无论大小,都面临着多样化和扩展能力的压力。对于云收购商来说,这些新产品线肯定会增加收入,但更重要的是,它们拥有附加功能,能够帮助云收购商的核心平台产生更多收入。

眼爆科技 Copyright © 2002-2017 深圳眼爆智能科技有限公司 版权所有 备案号:* 本站资源来自互联网,我们转载的目的是用于学习交流与讨论,如果您认为我们的转载侵犯了您的权益,请与我们联系(Email:gm@ybbtb.com),我们将在3个工作日内删除相关内容。

邮箱地址:gm@ybbtb.com