眼爆科技

AI生成的假新闻难以识别,那就用神经网络来对抗吧

时间:2019-06-10 16:30  编辑:眼爆科技

选自arXiv

作者:Rowan Zellers 等

机器之心编译

机器之心编辑部

之前,OpenAI GPT-2 因为太能生成假新闻而不提供开源。而最近,华盛顿大学和艾伦人工智能研究所的研究者表示,要想对抗假新闻,用对应的假新闻生成器是最好的方法。研究者通过大量实验表示,最了解假新闻缺点、假新闻「造假水平」的会是原本的生成器。因此想要判别 GPT-2 生成的假新闻,还是需要先开源 GPT-2 大模型。

论文地址:https://arxiv.org/pdf/1905.12616.pdf

自然语言生成领域近期的进展令人喜忧参半。文本摘要和翻译等应用的影响是正面的,而其底层技术可以生成假新闻,且假新闻可以模仿真新闻的风格。

现代计算机安全依赖谨慎的威胁建模:从攻击者的角度确定潜在威胁和缺陷,并探索可行的解决方案。同样地,开发对假新闻的稳健防御技术也需要我们认真研究和确定这些模型的风险。

来自华盛顿大学和艾伦人工智能研究所的研究人员近期的一项研究展示了一个可控文本生成模型 Grover。给出标题「Link Found Between Vaccines and Autism」,Grover 可以生成文章内容,且 Grover 生成的内容比人类写的假消息看起来更加可信。

图 1:该研究介绍了一个能够检测和生成假新闻的模型 Grover。

开发对抗 Grover 等生成器的稳健验证技术非常重要。该研究发现,当目前最好的判别器能够获取适量训练数据时,其辨别假新闻和人类所写真新闻的准确率为 73%。

而对 Grover 最好的防御就是 Grover 本身,它可以达到 92% 的准确率,这表明开源强大生成器的重要性。研究人员进一步研究了这些结果,发现数据偏差(exposure bias)和缓解其影响的采样策略都会留下相似判别器能够察觉的缺陷。最后,该研究还讨论了这项技术的伦理问题,研究人员计划开源 Grover,帮助更好地进行假新闻检测。

Grover 生成文章示例

图 8:上图是同样标题的两篇文章,一篇是人类书写的,另一篇则是 Grover 生成的,标题来自《卫报》。右下角为人类评分者给出的分数。


  • 共7页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 下一页




  • 上一篇:AI工场受邀出席2019年华洽会人工智能论坛 下一篇:人工智能“炒股”任重道远