人工智能推动交通非现场执法业务新变化

时间:2018-06-22 13:00  编辑:眼爆科技

随着技术的进步,交通非现场执法业务迎来了新的变化:多维数据准确识别;违法抓拍关注点在向人、车两个方向发展;新型执法方式不断出现;违法提醒业务开始增多……

变化一:多维数据准确识别

针对车牌号码的抓拍和识别技术目前已经很成熟了,业界普遍识别准确率都很好,大概做到99%也不是很难,但是对于其他的车辆特征,比如车型、车标、车款等特征,虽然也可以识别,但是其指标和车牌识别指标相比还是有一定的差距,还有诸如驾驶员不系安全带、开车打电话等行为特征的识别,准确率就更低了,有时候也就是50%—60%左右,基本上可以理解为抓拍相机具备了这个功能,但是因为指标较低,所以可用度其实并不高。

从2018年开始,基于深度学习算法的抓拍单元开始陆续出现,它的一个显著特征就是识别指标的快速提升,当前市场主流品牌摄像机支持包括车牌、车型、车身颜色、车款和车标等几十项车辆特征信息的快速准确识别,同时支持非机动车及行人特征的识别。

在交通管控、涉车治安防控应用方面,车辆大数据的应用是非常重要的,而决定大数据能不能用出好效果的重要因素之一就是数据准确性,在多维数据识别准确率方面,主流摄像机对于车型、车款和车标等重要车辆特征的识别,白天和夜间识别率均在98%以上,已几乎接近于车牌号码识别的准确率,有了这些更准确的多维数据作为支撑,涉车大数据应用将会发挥更大的价值。

变化二:违法抓拍关注点在向人、车两个方向发

提到违法抓拍,人们第一个想到的就是电子警察相机,它具备很多机动车违法行为的自动抓拍,比如闯红灯、违法变道、逆行、压线、不按导向车道行驶等,为交警非现场执法带来了很大的帮助,但这基本都是围绕着机动车这个目标展开的。

最近这两年,随着AI技术的快速发展,抓拍相机的识别能力有了很大的提升,违法抓拍的关注点已经不仅仅是机动车,比如斑马线不礼让行人抓拍、行人闯红灯抓拍、失驾人员布控等业务开始出现并快速发展,违法抓拍关注点在向人、车两个方向发展。优秀的摄像机在围绕人、车两个维度可以提供近20种违法抓拍功能,同时还创新实现了闯绿灯、低速抓拍、车间距抓拍等应用,另外在抓拍有效率方面也表现的很好,实测数据显示,部分功能如闯红灯、闯红灯停车、压线、占用公交车道的抓拍有效率高达100%,依托深度学习算法,真正实现了单相机多功能合一高效抓拍、分场景灵活应用的需求。

  • 共2页:
  • 上一页
  • 1
  • 2
  • 下一页




  • 上一篇:创意机器:人工智能对未来劳动力影响报告 下一篇:人工智能新算法:可预测人死亡时间 准确率高达95%