人工智能(56)–DBN算法

时间:2018-06-20 17:00  编辑:眼爆科技

人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下DBN算法。

2006年Hinton发表了一篇革命性的论文“Hinton, G. E., Osindero, S. and Teh, Y.,A fast learning algorithmfor deep belief nets.Neural Computation 18:1527-1554, 2006”,引领了DBN深度信念网络的研究,并突破深度学习(请参见人工智能(22))的架构。

DBN深度置信网络神经网络(请参见人工智能(23))的一种,既可以用于非监督学习,类似于一个Autoencoder自编码机(请参见人工智能(55));也可以用于监督学习,作为分类器来使用。因此十分值得研究。

DBN深度置信网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅评估了后者P(Label|Observation)。

DBN算法概念:

DBN深度置信网络(Deep BeliefNets)是一种生成模型,也是神经网络(请参见人工智能(23))的一种,通过训练其神经元间的权重,可以让整个神经网络按照最大概率来生成训练数据。不仅可以使用DBN来识别特征、分类数据,还可以用它来生成数据。

DBN由多层神经元构成,这些神经元又分为2种显性神经元和隐性神经元。显性神经元用于接收输入,隐性神经元用于提取特征,因此隐性神经元也叫特征检测器(Feature Detectors)。最顶上的两层间的连接是无向的,组成联合内存(associative memory)。较低的其他层之间有连接上下的有向连接。最底层代表了数据向量(data vectors),每一个神经元代表数据向量的一维。

  • 共4页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 下一页




  • 上一篇:狂烧了600多亿 人工智能的“商业大门”为谁开? 下一篇:加快制造业转型升级 人工智能必不可少