眼爆科技

人工智能之ICA算法

时间:2018-06-18 09:00  编辑:眼爆科技

人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下ICA算法。^_^

ICA独立成分分析是近年来出现的一种强有力的数据分析工具(Hyvarinen A, Karhunen J, Oja E, 2001; Roberts S J, Everson R, 2001)。1994年由Comon给出了ICA的一个较为严格的数学定义,其思想最早是由Heranlt和Jutten于1986年提出来的。

ICA从出现到现在虽然时间不长,然而无论从理论上还是应用上,它正受到越来越多的关注,成为国内外研究的一个热点

ICA独立成分分析是一种用来从多变量(多维)统计数据里找到隐含的因素或成分的方法,被认为是PCA主成分分析(请参见人工智能(46))和FA因子分析的一种扩展。对于盲源分离问题,ICA是指在只知道混合信号,而不知道源信号、噪声以及混合机制的情况下,分离或近似地分离出源信号的一种分析过程。

ICA算法概念:

ICA(IndependentComponent Analysis)独立成分分析是一门统计技术,用于发现存在于随机变量下的隐性因素。ICA为给观测数据定义了一个生成模型。在这个模型中,其认为数据变量是由隐性变量,经一个混合系统线性混合而成,这个混合系统未知。并且假设潜在因素属于非高斯分布、并且相互独立,称之为可观测数据的独立成分。

ICA与PCA相关,但它在发现潜在因素方面效果良好。它可以应用在数字图像、档文数据库、经济指标、心里测量等。

ICA算法本质

ICA是找出构成信号的相互独立部分(不需要正交),对应高阶统计量分析。ICA理论认为用来观测的混合数据阵X是由独立元S经过A线性加权获得。ICA理论的目标就是通过X求得一个分离矩阵W,使得W作用在X上所获得的信号Y是独立源S的最优逼近,该关系可以通过下式表示:

  • 共6页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 下一页




  • 上一篇:烧了600多亿 人工智能的“商业大门”为谁开? 下一篇:人工智能之Q Learning算法