人工智能之TD Learning算法

时间:2018-06-18 09:00  编辑:眼爆科技

人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下TD Learning算法。 ^_^

TD Learning时序差分学习结合了动态规划DP蒙特卡洛MC(请参见人工智能(31))方法,且兼具两种算法的优点,是强化学习的核心思想

虽然蒙特卡罗MC方法仅在最终结果已知时才调整其估计值,但TD Learning时序差分学习调整预测以匹配后,更准确地预测最终结果之前的未来预测。

TD Learning算法概念:

TD Learning(Temporal-Difference Learning) 时序差分学习指的是一类无模型的强化学习方法,它是从当前价值函数估计的自举过程中学习的。这些方法从环境中取样,如蒙特卡洛方法,并基于当前估计执行更新,如动态规划方法。

TD Learning算法本质

TD Learning(Temporal-DifferenceLearning)时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想。

时序差分不好理解。改为当时差分学习比较形象一些,表示通过当前的差分数据来学习。

蒙特卡洛MC方法是模拟(或者经历)一段序列或情节,在序列或情节结束后,根据序列或情节上各个状态的价值,来估计状态价值。TD Learning时序差分学习是模拟(或者经历)一段序列或情节,每行动一步(或者几步),根据新状态的价值,然后估计执行前的状态价值。可以认为蒙特卡洛MC方法是最大步数的TD Learning时序差分学习。

TD Learning算法描述:

如果可以计算出策略价值(π状态价值vπ(s),或者行动价值qπ(s,a)),就可以优化策略。

在蒙特卡洛方法中,计算策略的价值,需要完成一个情节,通过情节的目标价值Gt来计算状态的价值。其公式:

  • 共5页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页




  • 上一篇:人工智能之PCA算法 下一篇:烧了600多亿 人工智能的“商业大门”为谁开?