人工智能之Apriori算法

时间:2018-06-17 09:00  编辑:眼爆科技

人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下Apriori算法。^_^

Apriori算法是经典的挖掘频繁项集关联规则的数据挖掘算法,也是十大经典机器学习算法之一。

Agrawal和Srikant两位博士在1994年提出了Apriori算法,主要用于做快速的关联规则分析。

A priori在拉丁语中指"来自以前"。当定义问题时,通常会使用先验知识或者假设,这被称作"一个先验"(a priori)。Apriori算法正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的。

Apriori算法概念:

Apriori算法使用一种称为逐层搜索的迭代方法,其中k项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1。然后,使用L1找出频繁2项集的集合L2,使用L2找出L3,如此下去,直到不能再找到频繁k项集。每找出一个Lk需要一次数据库的完整扫描。Apriori算法使用频繁项集的先验性质来压缩搜索空间。

注:数据库中的数据可以是结构化的,也可以是半结构化的,甚至还可以是分布在网络上的异构型数据。

Apriori算法是一种最有影响掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集

  • 共5页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页




  • 上一篇:人工智能之K-Means算法 下一篇:中国人工智能商业落地百强榜公布 海尔U+位列TOP3