眼爆科技

人工智能之受限玻尔兹曼机(RBM)

时间:2018-05-10 13:00  编辑:眼爆科技

前言:人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下受限玻尔兹曼机(RBM)算法。

受限玻尔兹曼机RBM在深度学习领域一直有重要应用,它是一种可用随机神经网络来解释的概率图模型,由Smolensky在1986年在玻尔兹曼机BM的基础上提出, 是玻尔兹曼机BM的一种特殊拓扑结构

玻尔兹曼机BM原理起源于统计物理学,是一种基于能量函数的建模方法,能够描述变量之间的高阶相互作用,玻尔兹曼机BM的学习算法较复杂,但所建模型和学习算法有比较完备的物理解释和严格的数理统计理论作基础。

RBM概念:

以Hinton和Ackley两位学者为代表的研究人员从不同领域以不同动机同时提出BM学习机。BM是一种随机递归神经网络,可以看做是一种随机生成的Hopfield网络(请参见公众号之人工智能Hopfield网络)。BM是一种对称耦合的随机反馈型二值单元神经网络,由可见层多个隐层组成,网络节点分为可见单元(visible unit)和隐单元(hidden unit),用可见单元和隐单元来表达随机网络与随机环境的学习模型,通过权值表达单元之间的相关性

Smolensky提出的RBM由1个可见神经元层1个隐神经元层组成,由于隐层神经元之间没有相互连接并且隐层神经元独立于给定的训练样本,这使直接计算依赖数据的期望值变得容易,可见层神经元之间也没有相互连接,通过从训练样本得到的隐层神经元状态上执行马尔可夫链抽样过程,来估计独立于数据的期望值,并行交替更新所有可见层神经元和隐层神经元的值。

RBM引入

受限玻尔兹曼机RBM是对玻尔兹曼机进行

  • 共2页:
  • 上一页
  • 1
  • 2
  • 下一页




  • 上一篇:谷歌展示人工智能新进展 语音助手能帮用户打电话 下一篇:香港人才计划:期限3年出入境 狠抓人工智能领域