眼爆科技

人工智能之随机森林(RF)

时间:2018-05-05 09:00  编辑:眼爆科技

通过上一篇文章《人工智能之决策树》,我们清楚地知道决策树(DT)是一类常见的机器学习方法。决策树(DT)在人工智能中所处的位置:人工智能-->机器学习-->监督学习-->决策树。决策树主要用来解决分类和回归问题,但是决策树(DT)会产生过拟合现象,导致泛化能力变弱。过拟合是建立决策树模型时面临的重要挑战之一。鉴于决策树容易过拟合的缺点,由美国贝尔实验室大牛们提出了采用随机森林(RF)投票机制来改善决策树。随机森林(RF)则是针对决策树(DT)的过拟合问题而提出的一种改进方法,而且随机森林(RF)是一个最近比较火的算法。因此有必要对随机森林(RF)作进一步探讨^_^

随机森林(RF)在人工智能中所处的位置:人工智能-->机器学习-->监督学习-->决策树-->随机森林

随机森林(RF)指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标。

那么什么是随机森林?

随机森林(RandomForests)是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。Leo Breiman和Adele Cutler发展并推论出随机森林的算法。随机森林(RF)这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造决策树的集合。

通过定义我们知道,随机森林(RF)要建立了多个决策树(DT),并将它们合并在一起以获得更准确和稳定的预测。随机森林的

  • 共2页:
  • 上一页
  • 1
  • 2
  • 下一页




  • 上一篇:人工智能之强化学习(RL) 下一篇:人工智能之人工神经网络(ANN)