人工智能能不能解决当前医疗“大病致贫”的问题?

时间:2018-05-04 09:00  编辑:眼爆科技

“看病难,看病贵”,相信每个去过医院的人都深有体会。尤其是城镇低收入群体和农村居民的医疗负担更为沉重,一旦某个人患了重大的伤病,其全家都会陷入极度焦虑的状态。即使有了医保,大多数人还是会感叹:生不起病了。

如今,人工智能技术迅速崛起,被广泛应用在各行各业,医疗领域更是重要的应用场景之一。据统计,到2025年,世界人工智能市场的总值将达到1270亿美元,其中,医疗行业将占据AI市场的1/5。

在这样的大背景下,人工智能能不能解决当前医疗“大病致贫”的问题就成为了非常值得探讨的话题。

AI+医疗募捐可行吗

因为生活条件不好,健康保护不到位,穷人往往是越穷越生病,小病靠抗,大病靠天,纪录片《急诊室故事》里也表现了一个农民工在车祸后面对巨额手续费时的无奈。

面对这样的情况,慈善募捐似乎是一个可行的办法。但是,自知乎大V“童瑶”骗捐15万,再到朋友圈刷屏的“罗一笑,你给我站住”,别有用心的人利用平台诈捐让人们对互联网慈善的信任度一跌再跌。除此之外,还有慈善组织的善款流向不透明等问题也在挑战着人们的善意。《中国青年报》的一项调查也显示,虽然47.4%的受访者曾通过网络平台参与过捐款,但仅28.5%的受访者信任网络捐款中的慈善组织或募捐个人,62.4%的受访者担忧在网络募捐中存在诈捐、骗捐的潜在风险。由此可见,慈善募捐正面临着严重的“信任危机”。

所以,设计和实现慈善智能捐助服务平台,打造一个透明、公正的慈善募捐环境就显得尤其重要了。在这里,我们也可以提出几点畅想。

首先,我们可以将AI募捐系统与医院诊疗系统连接起来,获得患者的医疗数据,建立智能筛查项目,利用机器学习来审核患者是否需要接收医疗募捐。

也就是说,医院接收病人后,AI通过患者的医疗数据预估出医疗费用,再进行数据挖掘和智能分析,构建患者和家属的需求结构模型,挖掘患者的与身份、工作生活状态关联的对于募捐的需求,然后在征求患者同意后主动地为其在平台上发起募捐。

其次,我们可以用AI的大数据和AR识别来建立医疗募捐的诚信体系,正如《黑镜》中人们通过AR人脸识别,可以看到对方的实时评分。我们的身份信息将与社会信用评分系统相连接,如果募捐人曾出现过不诚信行为,则会记入个人诚信记录。

  • 共5页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页




  • 上一篇:<<AI技术出海:盘点走向国际的中国人工智能企业 下一篇:人工智能之机器学习ML>>